

## Pegasus P1800 Range

1800W 19" rack 3U power supply for general purpose



#### **Specification Summary**

DC High Voltage Power Supplies suitable for laboratory and industrial use. Standard remote control is by analogue signals. Should other controls be preferred please discuss this with our technical staff. Available in a standard 19-inch rack. Reduced weight and ease of serviceability is ensured, as the supplies are air insulated below 20kV.

The option of grid and filament outputs is available, please contact the factory for more information.

#### **Capacitor Charging Option:**

The Pegasus range can be adapted to suit capacitor charging applications at low to moderate PRF.

#### Input specifications

| AC input voltage range | 230VAC (198 - 264VAC) |
|------------------------|-----------------------|
| Input frequency        | 45 - 60Hz             |
| Power factor           | Greater than 0.95     |

### **Output specifications**

|                     | Air      |          |          |          | Encapsulated |          |          |
|---------------------|----------|----------|----------|----------|--------------|----------|----------|
| Model no.           | P1800/10 | P1800/20 | P1800/30 | P1800/40 | P1800/50     | P1800/70 | P1800/90 |
| Output voltage (kV) | 10       | 20       | 30       | 40       | 50           | 70       | 90       |
| Output current (mA) | 180      | 90       | 60       | 45       | 36           | 26       | 20       |

#### Other output specifications

| Output polarity                        | Negative or positive. Please specify.                                                         |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------|--|
| Load regulation                        | Not more than 100ppm of maximum rated output voltage for 10% to maximum output current change |  |
| Line regulation                        | Not more than 100ppm of maximum rated output voltage for ±10% input line change               |  |
| Ripple                                 | 0.1% peak to peak at inverter frequency                                                       |  |
| Stability after ½ hour settling period | Not more than 0.04% per hour<br>Not more than 0.05% per 8 hours                               |  |
| Temperature coefficient (0 to 50 °C)   | Typically not more than 100ppm of maximum output per °C                                       |  |

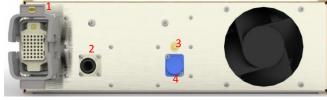
| External Options  Isolated grid output available up to 2000V at 10mA Isolated filament available up to 10V at 10A | External Options |
|-------------------------------------------------------------------------------------------------------------------|------------------|
|-------------------------------------------------------------------------------------------------------------------|------------------|

#### Protection

- A trip occurs after excessive sparking or the occurrence of an error. The counter in the circuit limits the spark rate.
- Current limit provides overload and short circuit protection.
- Primary over-current protection is provided by the inverter circuits.



a wide range of high voltage power supply systems


#### **Control Interface**

### Front panel:



| LED legend      | Description                                |
|-----------------|--------------------------------------------|
| MAINS           | Lamp for displaying mains power on         |
| Circuit breaker | MCB 230VAC, 20A                            |
| HV ENABLE       | Enable high voltage output                 |
| HV ON           | RED = ON<br>GREEN = OFF                    |
| CONST MA        | Constant current                           |
| CONST HV        | Constant high voltage                      |
| CONTACTOR       | Mains contactor indication                 |
| SUM ERROR       | GREEN = SYSTEM OK<br>RED = FAULTY          |
| FAN 1           | Fan indicator                              |
| FAN 2           | Fan indicator                              |
| FAN 3           | Fan indicator                              |
| PFC1 IOG        | PFC inverter output good status            |
| PFC2 IOG        | PFC inverter output good status            |
| PFC1 EN         | PFC downstream enable status               |
| PEC2 EN         | PFC downstream enable status               |
| INV1 OC         | Inverter over current                      |
| INV2 OC         | Inverter over current                      |
| EM. STOP        | Interlock input 1 status. Customer defined |
| DOOR            | Interlock input 2 status. Customer defined |
| THERMAL 1       | Heatsink over-temperature indication       |
| THERMAL 2       | Heatsink over-temperature indication       |
| LVPSU           | Low voltage power supplies OK              |

## Back panel:

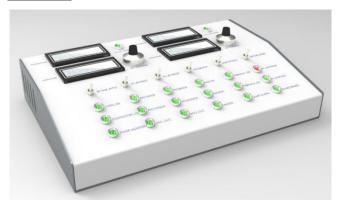


| 1 | Harting connector/D-<br>Sub connector* | Signal display and remote control                |
|---|----------------------------------------|--------------------------------------------------|
| 2 | HV output                              | Supplied with screened output cable              |
| 3 | M6 earth bonding                       | Internally connected to the incoming mains earth |
| 4 | Mains input                            | Neutrik NAC3FCA power inlet                      |

<sup>\*</sup>The 40 way Harting connector can be replaced by a 37 way D-Sub connector. Please specify when ordering.

### Remote control interface (optional)

The Pegasus P1800 power supplies can be controlled by connecting an external control interface to the Harting connector or the D-Sub connector. Genvolt can also supply specially-designed control panels for customer requirements.


#### **Control panel:**



This control panel is standard 19" 4U rack that has similar function as the control panel for Pegasus P600/900 power supplies.

| Main funtion         | Description                                                                            |
|----------------------|----------------------------------------------------------------------------------------|
| HV monitor           | Digital display for output voltage                                                     |
| mA monitor           | Digital display for output current                                                     |
| HV demand setting    | Input demand voltage by adjusting the potentiometer                                    |
| mA demand setting    | Input demand current by adjusting the potentiometer                                    |
| Key switch           | Enables HV output                                                                      |
| HV ON/OFF switch     | Turning HV on or off                                                                   |
| HV On report         | LED indicates when HV is enabled                                                       |
| Remote Status Report | LED indicates local/remote control                                                     |
| Contactor            | An interlock allows HV Enable                                                          |
| Active               | LED indicates when there is a spark event                                              |
| Reset                | The power supply can only be restarted when the reset button is pressed after sparking |

#### Console box:



For remote control LED signals, please refer to the front panel and Harting connector signals that stated above.



a wide range of high voltage power supply systems

| Funtion                | Description                                     |
|------------------------|-------------------------------------------------|
| HV monitor             | Digital display for output voltage              |
| mA monitor             | Digital display for output current              |
| HV command             | Digital display for customer demand voltage     |
| mA command             | Digital display for customer demand current     |
| Voltage setting        | 0-10V = 0 to full voltage - voltage programming |
| <b>Current setting</b> | 0-10V = 0 to full current - current programming |
| Switches               | Control input functions                         |

Please specify RS232 or IEEE 488 requirements when ordering.

## 40 way Harting connector:



### 37 way D connector:



## **Environmental requirements**

| Operating temperature | 0 to 35°C                                                             |
|-----------------------|-----------------------------------------------------------------------|
| Storage temperature   | 0 to 60°C                                                             |
| Relative humidity     | Operating at 30% to 80%. Do not store the unit at above 95% humidity. |

## **Mechanical specifications**

| Weight                      | Approx. 35kg. Depends on output voltage.                                                                           |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------|
| Dimensions                  | Standard 19" format chassis 3U high, 580mm deep excluding such back panel furniture as connectors, earth stud etc. |
| Power input connector       | Neutrik NAC3FCA power inlet                                                                                        |
| HV output connector         | Modified shell size 19 TNM female socket                                                                           |
| Control interface connector | 40 pin Harting connector or 37 way D-<br>Sub connector                                                             |

### **Harting connector:**

| Pin | Function      | Description                                                       |
|-----|---------------|-------------------------------------------------------------------|
| 1   | 3PhaseApplied | +24V = Command close contactor. 0V (or o/c) = Open contactor.     |
| 2   | OVLogicRef    | OV return for the LOGIC INPUT SIGNALS only.                       |
| 3   | HV_NoFault    | +24V = HVPSU fit to operate. 0V (is open circuit) = Fault present |

|    |                   | preventing operation.                                                                                       |
|----|-------------------|-------------------------------------------------------------------------------------------------------------|
| 4  | HV_Monitor        | +24V = HV is ON at lowest internal command level (i.e. at PWM chip). 0V (is open circuit) = HV is held off. |
| 5  | HV_kVCtrl         | +24V = The output voltage is maintained. 0V (is open circuit) = The output voltage is indeterminate.        |
| 6  | HV_mACtrl         | +24V = The output current is maintained. 0V (is open circuit) = The output current is indeterminate.        |
| 7  | ExcessArc         | +24V = Normal operation. 0V (is open circuit) = Trip caused by excessive arcing/discharge.                  |
| 8  | 3PhaseMon         | +24V = Contactor is closed. 0V (is open circuit) = Contactor is open.                                       |
| 9  | HV_Enable1        | +24V = Activate HV (needs confirmation from enable 2). 0V (or o/c) = HV inactive.                           |
| 10 | HV_Enable2        | +24V = Activate HV (needs confirmation from enable 1). 0V (or o/c) = HV inactive.                           |
| 11 | -15VControlBox    | -15VDC low power source from HVPSU to provide power for references, etc. (~100mA available).                |
| 12 | ArcDetectReset    | +24V = Clear the latched arc detection signal (line 7). OV (or o/c) = Normal state.                         |
| 13 | +15VControlBox    | +15VDC low power source from HVPSU to provide power for references, etc. (~100mA available).                |
| 14 | EmStopIntlk       | +24VDC input to HVPSU indicating emergency stop healthy. When logic 0, opens internal contactor in HVPSU    |
| 15 | DoorIntlk         | +24VDC input to HVPSU indicating reactor door closed. When logic 0, opens internal contactor in HVPSU       |
| 16 | HV_kVMonitor      | 0-10V analogue signal to PLC Host representing actual HV output. 10V = 120kV.                               |
| 17 | 0VAnalogueHV      | 0V reference output. Avoid current flow in this wire which will cause offsets.                              |
| 18 | HV_mAMonitor      | 0-10V analogue signal to PLC Host representing actual mA output. 10V = 15mA.                                |
| 19 |                   |                                                                                                             |
| 20 | 0VLogicRet        | OV current return for the LOGIC OUTPUTS ONLY. This is the return path for the LED currents                  |
| 21 | HV_kVCommand      | 0-10V analogue signal to HVPSU defining the high voltage set point or maximum limit.                        |
| 22 | HV_mACommand      | 0-10V analogue signal to HVPSU defining limiting/demand output current                                      |
| 23 | ExtWarningLampPOS | Output to external warning lamp (+12V/5W only)                                                              |
| 24 | ExtWarningLampNEG | Return from external warning lamp                                                                           |
| 25 | ContactorLockout  | +24V = Normal operation. 0V (is open                                                                        |



a wide range of high voltage power supply systems

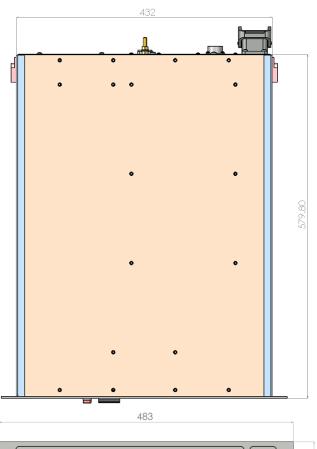
|    |               | circuit) = Pulse indicating contactor is opened. This causes a delay before the contactor can be closed again. Prevents abuse of the contactor.                                         |
|----|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26 | LampAlarm     | +24V = Normal operation. 0V (is open circuit) = The external warning lamp is failed at the same time as the contactor is requested closed. Signal inactive if contactor requested open. |
| 27 | Fan1OK        | +24V = Cross-member fan OK. 0V (is open circuit) = Fan fault detected.                                                                                                                  |
| 28 | Fan2OK        | +24V = Rear panel fan OK. 0V (is open circuit) = Fan fault detected.                                                                                                                    |
| 29 | Fan3OK        | +24V = Side panel fan OK. 0V (is open circuit) = Fan fault detected.                                                                                                                    |
| 30 | PFC1IOGOK     | +24V = PFC Module 1 indicates the output is good. 0V (is open circuit) = Not good.                                                                                                      |
| 31 | PFC1ENOK      | +24V = PFC Module 1 Load Enable signal is good. 0V (is open circuit) = Not good.                                                                                                        |
| 32 | PFC2IOGOK     | +24V = PFC Module 2 indicates the output is good. 0V (is open circuit) = Not good.                                                                                                      |
| 33 | PFC2ENOK      | +24V = PFC Module 2 Load Enable signal is good. 0V (is open circuit) = Not good.                                                                                                        |
| 34 | Thermal_10K   | +24V = The thermal switch 1 has not operated. 0V (is open circuit) = Overtemperature.                                                                                                   |
| 35 | Thermal_20K   | +24V = The thermal switch 1 has not operated. 0V (is open circuit) = Overtemperature.                                                                                                   |
| 36 | LVPSU_OK      | +24V = All the internal low voltage<br>power rails are good. 0V (is open<br>circuit) = Power rail(s) out of spec                                                                        |
| 37 | Inverter1_0/C | +24V = Normal operation. 0V (is open circuit) = Pulsed momentarily low to indicate that the current limit signal for inverter 1 has been activated.                                     |
| 38 | Inverter2_O/C | +24V = Normal operation. 0V (is open circuit) = Pulsed momentarily low to indicate that the current limit signal for inverter 2 has been activated.                                     |
| 39 |               | Do not use (no mating terminal at PLC end)                                                                                                                                              |
| 40 |               | Do not use (no mating terminal at PLC end)                                                                                                                                              |

# <u>D-Sub connector (For detailed pin descriptions please refer to the Harting connector):</u>

| Pin | Pin function   |    |                |
|-----|----------------|----|----------------|
| 1   | 3PhaseApplied  | 20 | OVLogicRef     |
| 2   | HV_NoFault     | 21 | HV_Monitor     |
| 3   | HV_kVCtrl      | 22 | HV_mACtrl      |
| 4   | ExcessArc      | 23 | 3PhaseMon      |
| 5   | HV_Enable1     | 24 | HV_Enable2     |
| 6   | -15VControlBox | 25 | ArcDetectReset |

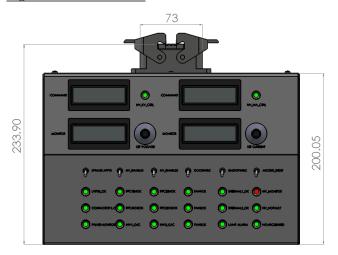
| 7  | +15VControlBox    | 26 | EmStopIntlk       |
|----|-------------------|----|-------------------|
| 8  | DoorIntlk         | 27 | HV_kVMonitor      |
| 9  | 0VAnalogueHV      | 28 | HV_mAMonitor      |
| 10 | OVLogicRet        | 29 | HV_kVCommand      |
| 11 | HV_mACommand      | 30 | ExtWarningLampPOS |
| 12 | ExtWarningLampNEG | 31 | ContactorLockout  |
| 13 | LampAlarm         | 32 | Fan1OK            |
| 14 | Fan2OK            | 33 | Fan3OK            |
| 15 | PFC1IOGOK         | 34 | PFC1ENOK          |
| 16 | PFC2IOGOK         | 35 | PFC2ENOK          |
| 17 | Thermal_10K       | 36 | Thermal_2OK       |
| 18 | LVPSU_OK          | 37 | Inverter1_O/C     |
| 19 | Inverter2_O/C     |    |                   |
|    |                   |    |                   |
|    |                   |    |                   |

#### Safety


- This power supply contains hazardous voltages and stored energy. Contact with the output may result in fatal injury. It should only be used and maintained by trained personnel.
- The area where the power supply is to be used should be kept clean and dry.
- Keep a safe distance from the output connector and any items connected to it.
- Ensure that a secure connection is made between the Earth side of the load and the green and yellow Earth lead.



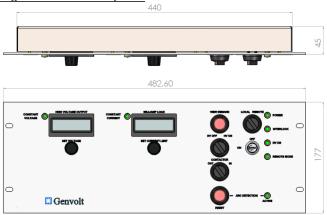
a wide range of high voltage power supply systems


#### **Dimensions**


## Pegasus P1800:






## Pegasus P1800 console box:





For requirements other than those specified, please do not hesitate to contact the factory.

## Pegasus P1800 control panel:





# Worldwide Locations



## **UK Office:**

Genvolt, New Road, Bridgnorth, Shropshire, WV16 6NN, United Kingdom Tel: +44 (0) 1746 862 555 Email: info@genvolt.co.uk Website: www.genvolt.com

## India Office:

Genvolt India Private Limited 806, Suratwala Mark Plazzo, Hinjewadi Village, Hinjewadi, Pune, Maharashtra - 411057, India

Email: supportindia@genvolt.co.uk Website: www.genvolt.in

## Research and Development:

Genvolt Ltd New road, Bridgnorth, Shropshire, WV16 6NN

Boher High Voltage Power Supplies Ltd (Genvolt China) No. 79 Yandangshan Road, Suyu District, Suqian City, Jiangsu, China